Below is a snapshot of the Web page as it appeared on 3/31/2011 (the last time our crawler visited it). This is the version of the page that was used for ranking your search results. The page may have changed since we last cached it. To see what might have changed (without the highlights), go to the current page.
Bing is not responsible for the content of this page.
APBRmetrics :: View topic - Musings on Win Shares, Aging Curves, and Replacement Levels
APBRmetrics Forum Index APBRmetrics
The statistical revolution will not be televised.
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Musings on Win Shares, Aging Curves, and Replacement Levels

 
Post new topic   Reply to topic    APBRmetrics Forum Index -> General discussion
View previous topic :: View next topic  
Author Message
DSMok1



Joined: 05 Aug 2009
Posts: 610
Location: Where the wind comes sweeping down the plains

PostPosted: Fri Jul 02, 2010 12:54 pm    Post subject: Musings on Win Shares, Aging Curves, and Replacement Levels Reply with quote

I've been pondering win shares as a proxy for all other 1 number evaluation metrics, and have worked on some additional research in a couple of areas.

First: mean performance, in terms of WS/48. I wanted to get a mean value for a Bayesian prior, based on non-statistical inputs. After a lot of experimentation, I settled on using 3 inputs: Team Efficiency Differential, player Minutes Per Game, and Age.

This chart shows the results:

(Age is set to 27 for this chart.)

What does this show? Basically it states what is well known in chart form. The better the team is, the better a player playing minutes for them will be. The worse the team is, the worse the low-minutes guys will be. "Replacement Level" is .025; note it's position on the graph. If your team is above league average, you won't be playing replacement level players even for 1 MPG (at least not likely).

The age adjustment was independent of MPG and Team Margin. Basically, if a player was younger, he probably wasn't as good (given a specific MPG on a specific quality of team). Younger players are given the benefit of the doubt a little--they are played a bit more than their quality would say they ought to be. However, the effect in these terms is minimal. A young player is only expected to be about .003 worse than a veteran getting the same playing time. Basically negligible.


The overall regression looked like this:
Code:
Coeff          Value
TeamMar        0.002496902595
MPG            0.003064042160
MPG*TeamMar    0.000121489052
MPG^2         -0.000003875497
MPG*TeamMar^2  0.000000060037
Age            0.001068992625
Age^2         -0.000016585885
Intercept      0.001736267696

(Obviously, the coefficients aren't that precise--just for completeness' sake.)

What can this be used for? A Bayesian estimation for a player's WS/48 for a given season, based on his playing time, age, and the quality of team he plays for.

What I haven't figured out yet is how many minutes of this "prior" to add in to a weighted average. I used 200 and the results looked good. That may be too much. Still, it neatly regressed the 100 minute outliers.

Also, a note on the MPG-- I adjusted players that had fewer than 15 MPG to a minimum of 75 games, to account for players that didn't play in many games but averaged, say, 10 MPG.

Here are the top player-seasons (regular seasons) since 1980, by regressed WS/48:

Code:
Rnk Player          Season  Age  Tm    G    MP     PER    WS     WS/48   MPG  Tm Mar Exp.WS/48 Regressed WS/48
1   Michael Jordan   1991   27   CHI   82   3034   31.6   20.3   0.321   37.0   9.4   0.200    0.313
2   Michael Jordan   1996   32   CHI   82   3090   29.4   20.4   0.317   37.7   13.4  0.239    0.312
3   LeBron James     2009   24   CLE   81   3054   31.7   20.3   0.318   37.7   10.0  0.207    0.311
4   Michael Jordan   1988   24   CHI   82   3311   31.7   21.2   0.308   40.4   3.5   0.162    0.300
5   LeBron James     2010   25   CLE   76   2966   31.1   18.5   0.299   39.0   7.1   0.188    0.292
6   David Robinson   1994   28   SAS   80   3241   30.7   20.0   0.296   40.5   5.8   0.183    0.289
7   Michael Jordan   1989   25   CHI   81   3255   31.1   19.8   0.292   40.2   1.4   0.145    0.284
8   David Robinson   1996   30   SAS   82   3019   29.4   18.3   0.290   36.8   6.7   0.177    0.283
9   Chris Paul       2009   23   NOH   78   3002   30.0   18.3   0.292   38.5   1.7   0.142    0.283
10  Michael Jordan   1997   33   CHI   82   3106   27.8   18.3   0.283   37.9   12.0  0.227    0.280
11  Shaquille O'Neal 2000   27   LAL   79   3163   30.6   18.6   0.283   40.0   9.1   0.210    0.279
12  Michael Jordan   1990   26   CHI   82   3197   31.2   19.0   0.285   39.0   3.3   0.157    0.277
13  Chris Paul       2008   22   NOH   80   3006   28.3   17.8   0.284   37.6   5.8   0.171    0.277
14  Dirk Nowitzki    2007   28   DAL   78   2821   27.6   16.3   0.278   36.2   8.1   0.185    0.272
15  Michael Jordan   1992   28   CHI   80   3102   27.7   17.7   0.274   38.8   11.0  0.222    0.271
16  Dirk Nowitzki    2006   27   DAL   81   3089   28.1   17.7   0.275   38.1   6.8   0.182    0.269
17  David Robinson   1995   29   SAS   81   3074   29.1   17.5   0.273   38.0   6.3   0.178    0.267
18  Kevin Garnett    2004   27   MIN   82   3231   29.4   18.3   0.272   39.4   6.2   0.182    0.267
19  Michael Jordan   1993   29   CHI   78   3067   29.7   17.2   0.270   39.3   6.8   0.187    0.265
20  Magic Johnson    1990   30   LAL   79   2937   26.6   16.5   0.270   37.2   7.0   0.181    0.264
21  Karl Malone      1997   33   UTA   82   2998   28.9   16.7   0.268   36.6   9.6   0.200    0.264
22  Charles Barkley  1990   26   PHI   79   3085   27.1   17.3   0.269   39.1   5.1   0.171    0.263
23  Magic Johnson    1989   29   LAL   77   2886   26.9   16.1   0.267   37.5   7.1   0.182    0.262
24  David Robinson   1998   32   SAS   73   2457   27.8   13.8   0.269   33.7   4.4   0.148    0.260
25  Kevin Garnett    2008   31   BOS   71   2328   25.3   12.9   0.265   32.8   11.3  0.197    0.260


This year's top 15:

Code:
Rank  Player           Age   Tm     G     MP      WS      WS/48 Exp. WS/48  Regressed WS/48
1     LeBron James     25    CLE    76    2966    18.5    0.299    0.188    0.292
2     Kevin Durant     21    OKC    82    3239    16.1    0.238    0.160    0.233
3     Dwight Howard    24    ORL    82    2843    13.2    0.223    0.178    0.220
4     Dwyane Wade      28    MIA    77    2792    13      0.224    0.142    0.219
5     Pau Gasol        29    LAL    65    2403    11      0.22     0.165    0.216
6     Tim Duncan       33    SAS    78    2438    10.9    0.215    0.147    0.210
7     Manu Ginobili    32    SAS    75    2150    9.7     0.216    0.138    0.209
8     Chris Paul       24    NOH    45    1712    7.3     0.204    0.110    0.194
9     Dirk Nowitzki    31    DAL    81    3039    12.3    0.194    0.150    0.191
10    Nene Hilario     27    DEN    82    2755    10.8    0.188    0.147    0.185
11    Greg Oden        22    POR    21    502     2.2     0.214    0.109    0.184
12    Andrew Bynum     22    LAL    65    1977    7.8     0.188    0.140    0.184
13    Al Horford       23    ATL    81    2845    10.9    0.183    0.158    0.181
14    Chauncey Billups 33    DEN    73    2490    9.5     0.182    0.149    0.180
15    Amare Stoudemire 27    PHO    82    2838    10.7    0.181    0.156    0.179

Next post: Aging Curves.
Back to top
View user's profile Send private message Send e-mail Visit poster's website
DSMok1



Joined: 05 Aug 2009
Posts: 610
Location: Where the wind comes sweeping down the plains

PostPosted: Fri Jul 02, 2010 1:50 pm    Post subject: Reply with quote

Here is some rough work on WS/48 aging curves.

I followed the procedure outlined here: http://www.insidethebook.com/ee/index.php/site/article/basic_aging_curve_for_hitters_1957_2006/

Obviously, survivor bias is a huge issue, and one I don't fully know how to compensate for.

I used matched pairs of all players that had 100 MPG in both years. The fact that a player had 100 MPG in each year biases the older sample towards decline, since in order for a player to get 100 MPG in Y+1 he had to perform to a certain level in Y, perhaps even be lucky. The same is true in early years, biasing towards increase, though not so badly.

To try to solve this, I regressed the first year results, using the 200 minutes of expected WS/48, and compared that to the unadjusted second year results.

Here is the aging curve, showing raw WS/48 and the regressed WS/48. I'm not sure if I regressed the right way....



I'm showing the peak is at 26, rather than 27. That said, I like the looks of the regressed curve, particularly when compared to the minutes we see at each age. If the number of minutes starts to drop significantly at age 27, the players are probably passing their peak. I do expect the minutes to peak earlier than the players themselves, as players in development are given more minutes because of potential improvement.

Note I normalized these curves so the peaks would be at 0.100. In other words: if a player is at a true talent of 0.175 at age 25, he would be projected to be at 0.161 at age 30.

Here are the actual numbers, both for the Raw WS/48 and the Adjusted WS/48:
Code:
Age    Eff. Min   Raw     Regressed   Curve
18     2648      -0.024    -0.032    -0.028
19     34629      0.016     0.008     0.006
20     126201     0.037     0.032     0.034
21     277620     0.057     0.057     0.056
22     624441     0.071     0.072     0.073
23     1055516    0.085     0.088     0.085
24     1279689    0.092     0.094     0.093
25     1334885    0.096     0.098     0.098
26     1332637    0.099     0.100     0.100
27     1284283    0.100     0.098     0.099
28     1186896    0.099     0.095     0.096
29     1062218    0.096     0.091     0.091
30     905080     0.092     0.085     0.085
31     729743     0.086     0.076     0.077
32     567531     0.078     0.070     0.067
33     429684     0.074     0.060     0.057
34     308454     0.063     0.045     0.046
35     201169     0.053     0.037     0.035
36     123215     0.042     0.025     0.022
37     71096      0.029     0.008     0.009
38     38210      0.011    -0.010    -0.005
39     20366     -0.002    -0.016    -0.019
40     8667      -0.010    -0.041    -0.035
41     3240      -0.015    -0.065    -0.051
42     1077      -0.048    -0.071    -0.069
43     296       -0.035    -0.041    -0.088


I recommend using the "curve" numbers; the curve is a 4th-order polynomial, fitted to the Regressed data, weighted the square root of the Effective Minutes (which aren't actual minutes played).

The equation of the curve:
Code:
-2.7188227611   Intercept
 0.3199248445   Age
-0.0132504155   Age^2
 0.0002404433   Age^3
-0.0000016798   Age^4


Please evaluate whether I have regressed appropriately.... this survivor bias issue is difficult.
Back to top
View user's profile Send private message Send e-mail Visit poster's website
jim



Joined: 01 Aug 2009
Posts: 13

PostPosted: Mon Jul 05, 2010 9:46 am    Post subject: Reply with quote

Really good stuff, DSMok1.
Back to top
View user's profile Send private message
DSMok1



Joined: 05 Aug 2009
Posts: 610
Location: Where the wind comes sweeping down the plains

PostPosted: Tue Jul 06, 2010 4:42 pm    Post subject: Reply with quote

A few updates:

I ran some year-to-year correlations to estimate the stability of WS/48. I controlled the players used to minimize changes in roles--I used players that had similar MPG, total minutes, and games played in subsequent years. (I was basically attempting to simulate a split-half correlation test, like those used at 525600 Minutes: How do You Measure a Player-in a Year) This estimate of stability can then be used to generate a regression equation, like Tom Tango has done for baseball: r=x/(x+n), where x is the number of minutes, r is the correlation, and n is the number of minutes of baseline/prior expectation to use.

I ended up with 407 year over year data points that fulfilled my criteria. I simply ran a correlation on the 407 points WS/48 points, and also looked at what the average number of minutes in the two years was: 2256 minutes, correlation of 0.7424.

Using Tango's equation (http://www.insidethebook.com/ee/index.php/site/comments/pre_introducing_batted_ball_fip_part_2/, that yields a regression equation for WS/48 of
Regression Rate = 782/(n+782)
where n is the number of minutes. Since we are using year-to-year correlations to approximate this, I rounded this down to 750:
Use 750 minutes of the Bayesian Prior to regress WS/48

Note, I may be doing this all wrong.... but that's why I'm posting here, for review. I'm not totally certain that Tango's regression equation is applicable here.

Anyway, it appears that the use of 200 minutes for regressing WS/48 was low. After correcting for that, here are the top 40 players from last year, in regressed WS/48:
Code:
Rk    Player           Age   Tm     G     MP      PER     WS/48   Regressed WS/48
1     LeBron James     25    CLE    76    2966    31.1    0.299    0.277
2     Kevin Durant     21    OKC    82    3239    26.2    0.238    0.223
3     Dwight Howard    24    ORL    82    2843    24.0    0.223    0.214
4     Pau Gasol        29    LAL    65    2403    22.9    0.220    0.207
5     Dwyane Wade      28    MIA    77    2792    28.0    0.224    0.207
6     Tim Duncan       33    SAS    78    2438    24.7    0.215    0.199
7     Manu Ginobili    32    SAS    75    2150    22.5    0.216    0.196
8     Dirk Nowitzki    31    DAL    81    3039    22.9    0.194    0.185
9     Nene Hilario     27    DEN    82    2755    18.9    0.188    0.179
10    Al Horford       23    ATL    81    2845    19.4    0.183    0.178
                               
11    Amare Stoudemire 27    PHO    82    2838    22.6    0.181    0.176
12    Chris Paul       24    NOH    45    1712    23.7    0.204    0.175
13    Deron Williams   25    UTA    76    2802    20.6    0.177    0.175
14    Andrew Bynum     22    LAL    65    1977    20.2    0.188    0.175
15    Chauncey Billups 33    DEN    73    2490    20.2    0.182    0.174
16    Carlos Boozer    28    UTA    78    2673    21.3    0.178    0.174
17    Brandon Roy      25    POR    65    2419    21.3    0.180    0.174
18    Steve Nash       35    PHO    81    2660    21.6    0.178    0.172
19    Gerald Wallace   27    CHA    76    3119    18.3    0.177    0.172
20    Anderson Varejao 27    CLE    76    2166    15.8    0.179    0.171
                               
21    Chris Bosh       25    TOR    70    2526    25.0    0.182    0.166
22    Kobe Bryant      31    LAL    73    2835    21.9    0.160    0.162
23    Andrei Kirilenko 28    UTA    58    1681    18.2    0.171    0.161
24    Kevin Garnett    33    BOS    69    2060    19.4    0.171    0.161
25    Paul Pierce      32    BOS    71    2411    18.2    0.165    0.160
26    J.J. Redick      25    ORL    82    1808    15.0    0.173    0.160
27    Vince Carter     33    ORL    75    2310    17.1    0.154    0.156
28    Josh Smith       24    ATL    81    2871    21.0    0.155    0.156
29    Rajon Rondo      23    BOS    81    2963    19.1    0.156    0.155
30    Marc Gasol       25    MEM    69    2469    19.3    0.164    0.152
                               
31    Andrew Bogut     25    MIL    69    2229    20.7    0.161    0.152
32    Greg Oden        22    POR    21    502     23.1    0.214    0.151
33    David Lee        26    NYK    81    3019    22.2    0.163    0.151
34    Nicolas Batum    21    POR    37    918     17.3    0.181    0.150
35    Carmelo Anthony  25    DEN    69    2634    22.2    0.145    0.149
36    Chris Andersen   31    DEN    76    1692    15.9    0.166    0.148
37    Jason Kidd       36    DAL    80    2881    17.2    0.148    0.147
38    Paul Millsap     24    UTA    82    2277    16.7    0.151    0.147
39    LaMarcus Aldridge24    POR    78    2922    18.2    0.145    0.147
40    Zach Randolph    28    MEM    81    3051    21.2    0.153    0.146


I'll post a corrected aging curve sometime soon, as well as, hopefully, a projection system for Win Shares. (The idea is that the same methods will work for SPM, when I finally get the latest SPM regression done.)
Back to top
View user's profile Send private message Send e-mail Visit poster's website
BobboFitos



Joined: 21 Feb 2009
Posts: 199
Location: Cambridge, MA

PostPosted: Sat Aug 28, 2010 12:49 am    Post subject: Reply with quote

Strange bump maybe, but I've been thinking a ton about aging curves lately. It would be interesting if, rather then lumping "all nba players" together, to break up various player types. The reason for this is certain guys who buck the trend (Nash/Stockton, for example) are/were pass first, insanely good shooters. It seems their games didn't decline at all.

There are a bunch of player classification, but even a simple one based on height first could perhaps show different peaks/etc...
_________________
-Rob
Back to top
View user's profile Send private message AIM Address
Manchvegasbob



Joined: 03 Aug 2008
Posts: 52

PostPosted: Thu Sep 30, 2010 7:31 pm    Post subject: Aging Curve for Garnett Reply with quote

I was looking to see what was available for discussion on aging curves and was glad to this thread bumped up.

I had an article posted Forecasting Garnett: 2011 and Beyond and got a kick out of the classic parabolic curve.

I recalled that this 2nd order polynomial predictor show's up in the classic (see NBAstuffer.com)
Quote:

Trade Value= (AV-Y)2(Y+1)AV/190 + AV*Y2/13

where AV is Approximate Value Y= 27-0.75*Age. A player's Y factor represents an estimate of how many seasons he has left to play and is always assumed to be at least one and a half years.


Anyway, I came up with the following best-fit regression curves using minutes played and PER versus age and WS/48.

[/url]

I can provide some of the raw data if you are interested - I wasn't encouraged by the results for Garnett, but word out of the first few days of training camp is encouraging that he may be rejuvenated, but not many of the MVPs listed above have been able to turn things around after the decline sets in.

Compared to the Heat, the aging Celtics are considered an afterthought. So these type of aging curves are particularly interesting in assessing what's left in the tank for Garnett, Ray Allen and Shaq and perhaps Pierce and JO as well. I just think Garnett and Allen are oddities of nature with regard to how fit they are, that either of them could have a renaissance season. However, Shaq has proven he's done.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    APBRmetrics Forum Index -> General discussion All times are GMT - 5 Hours
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group